What's new in MODDE Pro 11

Table of contents

• Stability testing

nks

- Introduction
- Example using design wizard
- Early stage analysis and removal of ingredient causing instability
- Late stage analysis and trajectory predictions
- New features for design space estimation
 - Several supported uncertainty interval estimates
 - Enhanced design space explorer tool
 - Inscribed hypercube (interactive)
 - PAR connection better worked out
- Power estimation of new designs
- New screening design family: Reduced combinatorial designs
- Prediction plot updates

Stability testing

MKS Confidential 3

Introduction to stability testing

- A pharmaceutical product in storage may change its quality characteristics with time.
- A product is considered stable as long as its quality characteristics remain within specifications.
- The shelf life of a product corresponds to the number of days it remains stable at the recommended storage conditions.
- The process of collecting experimental data for estimating and verifying a product's shelf life is called <u>stability testing</u>.
- With the release of MODDE Pro 11, MKS Umetrics introduces a new class of reduced combinatorial designs that are especially well suited to the needs of stability testing

S UMETRICS

File / New / Stability Designs

Stability design

Stability designs can be used for an efficient evaluation of product stability. The stability designs use a novel multilevel design strategy. The designs, distributed over a time sequence, fit the standard matrixing schedule used for pharmaceutical stability studies. Any type of study designed as a sequence of investigations can be efficiently mastered using the stability designs.

Matrixing

- Full testing of all factor combinations is done at 0 and 36 months
- Reduced testing is carried out at all other time points
 - Usually, 3, 6, 9, 12, 18 & 24 months
 - Only subsets of the factor combinations are tested
 - Common reductions are the <u>one-half</u> and the <u>one-third</u> reduction
- Ideally, the various reductions tested at 3, 6, 9, 12, 18 & 24 months should be complementary
 - All factor combinations are investigated at least once in each type of reduction
 - Balancing it is advantageous if all levels of any qualitative or multilevel factor are exploited the same number of times in each reduction

nks

Design wizard to define the investigation

• Time factor pre-configured (can be modified)

				Design	Wizard			
	1							
	Define	factors						
acto	e: 1 (1 proce	an Omistum)						
	s. I (I ploce	ss, u moture)						
	Name	Abbr.	Units	Туре	Use	Settings	Transform	Precision
1	Name Time	Abbr. T	Units month	Type Time	Use Controlled	Settings 0; 3; 6; 9; 12; 18; 24; 36	Transform	Precision

Additional factors defined in the usual way...

III F	actors						_ Ο Σ
	Name	Abbr.	Units	Туре	Settings	Transform	Precision
1	Time	Time	month	Time	0; 3; 6; 9; 12; 18; 24; 36		
2	Strength	Str	mg	Quantitative	10 to 20	None	0,25
3	Batch	Batch		Qualitative	Batch 1; Batch 2; Batch 3		
4	Package	Pack		Qualitative	Pack A; Pack B; Pack C; Pack D		
		Double-click here	to add	a new factor			
		1					

... as well as the response(s)

METRICS

ſ	III R	Responses							_ 0 %
		Name	Abbr.	Units	Transform	Туре	Min	Target	Max
	1	Impurities	Imp		None	Regular			2
			Double-click here	to add	a new response				

omks

Define stability design setup page

- Which Reductions to use and when is easy to regulate
- Additional reductions can be added

T:	auons: 24	2		6	0	12	10	24	20	
Time:	0	3	<u> </u>	0	y	12	18	24	50	
Design set:	A	C:1	/ C:2		C:3	А	B:1	B:2	A	
Denlineter		B:1	-			0	0			_
Replicates:		B:2		0	0	0	0		,	0
Design set runs:	2/	C:1		9	0	24	12	12		24
Total number of runs:	24	C:3			0	24	12	12	-	24
rotal number of fulls.	2-	•	•		0	24	12	12	-	24
esign sets:									Ŧ	Ξ
Design set	Balance	ed				Condition numb	er		Number of	runs
Reduction: 1 (des	ign: A, runs: 24) Yes						2			24
Reduction: 2 (des R-1	ign: B, runs: 12, 12) Vec					2 314(13			12
B:2	Ves					2,3140	13			12
 Reduction: 3 (des C:1 C:2 C:3 	ign: C, runs: 8, 8, 8 No No No)				3,200 2,80 3,200	56 13 56			8 8 8

Worksheet – some differences

- <u>Combination ID:</u> There will be as many Combination IDs as there are factor combinations (excluding Time), i.e. 24 in our example.
- <u>Exp Name:</u> Modified naming structure for each experimental run, which indicates Combination ID and time point.
- <u>Two list boxes</u>. Enable subset selections of the experiments to be done. Subset selections can be accomplished based on the factor combinations and time points.

π ν	Vorksheet	t										_	• **
Inclu	uded time p	oints: [All]	+ Included	l combinatio	ns: [Al	1]	-						
	1	2	3	4	5		6	7	8	9	10		^
1	Exp No	Combination ID	Exp Name	Run Order	Incl/E	ccl	Time	Strength	Batch	Package	Impurities		
2	1	C1	C1:T0	1	Incl	-	0	10	Batch 1 💌	Pack A 👻			
3	2	C2	C2:T0	2	Incl	-	0	20	Batch 1 💌	Pack A 👻			
4	3	C3	C3:T0	3	Incl	-	0	10	Batch 2 💌	Pack A 🔻			
5	4	C4	C4:T0	4	Incl	-	0	20	Batch 2 💌	Pack A 👻			
6	5	C5	C5:T0	5	Incl	-	0	10	Batch 3 💌	Pack A 🔻			
7	6	C6	C6:T0	6	Incl	-	0	20	Batch 3 💌	Pack A 👻			
8	7	C7	C7:T0	7	Incl	•	0	10	Batch 1 💌	Pack B 👻			
9	8	C8	C8:T0	8	Incl	•	0	20	Batch 1 💌	Pack B 👻			
10	9	C9	C9:T0	9	Incl	-	0	10	Batch 2 👻	Pack B 👻			~

Early stage data analysis – time factor

- In the early stages, say after 6 or 9 months, the focus lies on trending, i.e., understanding what will likely be the development trajectory of the response with time
 - Simple regression model, usually Time is used as the single factor
 - Subset selection of experiments representing different time spans is easily accomplished by using the list boxes of the worksheet.

Worksheet									- 0	23
Included time points: 0); 3; 6 🚽 Include	d combinatio	ns: [All]	•					
✔ 0	3	4	5		6	7	8	9	10	~
3	p Name	Run Order	Incl/Ex	d	Time	Strength	Batch	Package	Response	
	:T0	1	Incl	•	0	10	Batch 1 👻	Pack A 👻	1,50313	
12 3	:T0	2	Incl	•	0	20	Batch 1 💌	Pack A 👻	1,3298	
18	:T0	3	Incl	•	0	10	Batch 2 💌	Pack A 👻	1,41561	
24	:T0	4	Incl	•	0	20	Batch 2 💌	Pack A 👻	1,31665	
36	:T0	5	Incl	•	0	10	Batch 3 💌	Pack A 👻	1,32241	
7 6 C6	C6:T0	6	Incl	•	0	20	Batch 3 👻	Pack A 👻	1,34488	
8 7 C7	C7:T0	7	Incl	•	0	10	Batch 1 👻	Pack B 👻	1,28007	
9 8 C8	C8:T0	8	Incl	•	0	20	Batch 1 👻	Pack B 👻	1,49107	
10 0 00	C0-T0	0	Incl	_	0	10	Datch 2 -	Dack P -	1 /2017	~

S UMETRICS

Visualization predicted trajectory

- The Factor Effect plot is used
- Impurities trajectory plotted after 3, 6, 9 and 12 months
- Better precision in predictions over time (more data points)

 Judging from this early stage trend analysis, we are at risk of violating the 36 months Max setting of the response!

Early stage data analysis – all terms

- Worrying increase in the predicted level of Impurities towards the end of the stability test
- It is of relevance to investigate the impact of the other three factors on Impurities
- The regression model must be modified so that it includes all possible main and interaction effects;
 - On the Home tab, click Edit model.

S UMETRICS

Plot of regression coefficients

- Model for 0-12 months: Batch 3 is associated with a rapid and unacceptable increase in the level of Impurities.
 - This batch should be excluded from further consideration; it will not comply with the final 36 months acceptance criterion

13

Late stage data analysis – Batch 3 exclusion

- All samples including this factor setting need to be excluded from the data analysis.
 - Sort the MODDE worksheet according to the Batch factor.
 - Then simply mark all rows containing Batch 3 and in the Incl/Excl column select the setting Excl.

۱ 🎟 ۷	Vorkshee	t										_ 6	a 23
Incl	uded time p	ooints: 0; 3; 6; 9; 1	2 - Included	d combinatio	ns: [A	1]	•						
	1	2	3	4	5		6	7	8	扇	Pandomize run order		^
1	Exp No	Combination ID	Exp Name	Run Order	Incl/Ex	ccl	Time	Strength	Batch			_	
2	1	C1	C1:T0	1	Incl	-	0	10	Batch 1	ል	Cut Ctrl+	·X	
3	2	C2	C2:T0	2	Incl	-	0	20	Batch 1		Copy Ctrl+	C	
4	3	C3	C3:T0	3	Incl	-	0	10	Batch 2	Û	Paste Ctrl+	V	
5	4	C4	C4:T0	4	Incl	-	0	20	Batch 2		Custom sort		
6	5	C5	C5:T0	5	Incl	-	0	10	Batch 3	A	Sort ascending		
7	6	C6	C6:T0	6	Incl	-	0	20	Batch 3	Z*	Sort discertaining		
8	7	C7	C7:T0	7	Incl	•	0	10	Batch 1	Ă+	Sort descending		
9	8	C8	C8:T0	8	Incl	•	0	20	Batch 1	🎓	Add to	b	
10	9	C9	C9:T0	9	Incl	-	0	10	Batch 2	-	Add to report Ctrl+	R	
11	10	C10	C10:T0	10	Incl	-	0	20	Batch 2		Add experiment	ıs	
12	11	C11	C11:T0	11	Incl	-	0	10	Batch 3	×	Delete D		
13	12	C12	C12:T0	12	Incl	•	0	20	Batch 3				
14	13	C13	C13:T0	13	Incl	•	0	10	Batch 1		Save as		
15	14	C14	C14:T0	14	Incl	-	0	20	Batch 1	-	Print Ctrl+	P	
16	15	C15	C15:T0	15	Incl	•	0	10	Batch 2		Properties Alt+Ent	er	
17	16	C16	C16:T0	16	Incl	-	0	20	Batch 2	▼ [P	ackC ▼ 1,34671		Υ.

Late stage data analysis – Look at trajectory

- A model for a larger time span (0-24 months) was calculated using Time as the single factor.
- The conclusion is that the 36 months acceptance criterion will be met

Conclusions

 The new design family for stability testing is based on reduced combinatorial design sets that are perfectly complementary when superimposed on top of one another

The novel stability designs are very flexible and apt for matrixing

- All factors levels are tested at an early stage
- Allows the user to detect and remove elements in the experimental scheme that cause instability
- Early removal of uninteresting elements and zooming-in on critical features facilitate optimal use of the available testing resources

nks

New features for design space estimation

omks

New features and deafult settings

- Several supported uncertainty interval estimates
 - Will profoundly affect the size of the resulting design space
- Enhanced design space explorer tool
 - Inscribed hypercube (interactive)
 - PAR connection better worked out
- New defaults
 - Probability of failure =1%, DPMO = 10.000
 - Interval estimate = prediction

Uncertainty interval estimates

- A possibility to set three types of interval estimates for the probability function
- Interval estimates
 - Confidence interval (MODDE 10)
 - Average prediction interval
 - Prediction interval (Default for MODDE Pro 11)
 - Next observation interval
 - Tolerance interval
 - Next population interval
- See detailed information in Statistical appendix

Interval distributions

MODDE user guide

• Confidence interval

 This interval encloses average of the true population, with some confidence, and is mainly used to illustrate the variance of the model coefficients.

Prediction interval

 This interval encloses a region within which we are confident that the next observation will fall.

Tolerance interval

- This interval encloses a region within which we are confident that some proportion of future samples will fall.
- The Confidence interval and Prediction interval require an acceptance level, *i.e.*, roughly speaking a probability. It is usually expressed as the Confidence level (90 %, 95 % or 99 %). The Tolerance interval requires an acceptance level, but also requires a parameter for the fraction of future samples that fall within the interval, called the Tolerance proportion. The default setting in MODDE for evaluation of model parameters is Confidence interval at 95 %. The default setting for design space is Prediction interval at 99 %.

mks

omks

Design space, interval settings

• Default: 1% probability of failure limit using prediction interval type

Design Space Contour Options	Design Space Contour Options
Design space options Interva estimation	Design space options Interval estimation
Resolution: 16 -	Interval type:
Use color	Prediction 📕 🔻
Show contour level labels	Confidence level: Tolerance proportion:
Output: Probability of failure (%)	95% 🔻 95% 👻
Limit (in %) 1	
Simulations/point: 10000	The simulation will generate points with variance based on the selected interval estimate. This will in turn generate the
☑ Include model error	required safety margins that correspond to the defined probability limit of the ideal average prediction. The safety margin increases from Confidence to Prediction (and in general) to Tolerance.
OK Cancel Help	OK Cancel Help

• Confidence level setting depends on setting for Limit (in %) and is therefore inactive; should be interpreted as 99% if Limit is 1%

Tolerance settings

Design Space Contour Options

- Tol
- Def dist

Tolerance is different Default 1% of the distribution is accepted	Design space options Interval estimation Resolution: 1 Use color Use color Show contour level labels Output: Probability of failure (%) 1
Design Space Contour Options Design space options Interval estimation Interval type: Interval type: Tolerance Interval type: State Interval type: Tolerance Interval type: State Interval type: Interval type: Interval type: Interval type: <t< th=""><th>Simulations point: 10000 Children model error OK Cancel Help</th></t<>	Simulations point: 10000 Children model error OK Cancel Help
The simulation will generate points with variance based on the selected interval estimate. This will in turn generate the required safety margins that correspond to the defined probability limit of the ideal average prediction. The safety margin increases from Confidence to Prediction (and in general) to Tolerance.	

• mks

х

mks

Design Space Explorer as in M10.1

Design Space Explorer M11

mks

Proven acceptable ranges – Approach 1

• Approach 1. Based on the robust setpoint.

The hypercube range field of the design space explorer is used in this mode. The black T-lines extending out from the robust setpoint co-ordinate indicate the individual ranges for the factors, i.e., the largest allowable range of a process parameter, while keeping all other parameters constant at their setpoint value.

Design space hypercube						џ
Factor	Setpoint	Role	Hypercube low edge	Hypercube high edge	Hypercube range	
Air	242,933	Free	240	242,933		
EGR%	8,4	Free	7,2	8,4		
Needlelift	-5,00933	Free	-5,39467	-4,624		

Proven accepble ranges – Approach 2

• Approach 2. Based on the dotted hypercube frame. The dotted frame in the design explorer plot (below) designates the largest possible *regular* hypercube that can be inserted into the *irregular* design space volume. How this regular hypercube extend into many dimensions is given by the green bars seen in the Hypercube range part in the previous slide. The green bars mark the *mutual ranges* within which all factors can be changed at the same time without further restrictions.

Proven acceptable ranges – Approach 3

• Approach 3 is reminiscent of approach 1, but is based on a *distribution* around a setpoint. Such distributions are attained using the Setpoint analysis functionality in MODDE.

Setpoint Analysis - O	ptimizer Setp	oint (R)			- • ×
Factor	Low	Setpoint	High Std. dev. Role	Distrib	Estimated acceptable range
Air	237.158	242.933	248.708 2.94643 Free	Normal	
EGR%	7.50375	8.4	9.29625 0.45727 Free	Normal	
Needlelift	-6.00277	-5.00933	-4.01589 0.506855 Free	Normal	
Response	Min	Target	Max Criterion Cok	DPMO	Predicted response profile
Fuel		210	250 Minimize 0.84831	5040	
NOx		10	25 Minimize 1.52088	0	
Soot		0.05	1 Minimize 1.27672	5660	
Total DPMO: 10700. DPM	10 limit: 1000	0. Samples:	50000. Interval=Prediction		

Miscellaneous new features

Miscellaneous new features

- Power estimation of new designs
- New screening design family: Reduced combinatorial designs
- Prediction plot updates
 - Uncertainty interval estimates include confidence, prediction and tolerance options
 - Original response data are displayed
 - Transformed factors back-transformed to original unit
- Unicode to support all character sets

Design power

- Power denotes our ability to detect a significant effect
 - How many runs are required in order to detect a significant effect?
 - It is assumed that least one regression coefficient is significant
 - Input is expected (target) R2 for the investigation and alpha level
 - Output is Power and suggested (= necessary) number of runs to reach a power of at least 0.8

If Full Fac (2 levels) 64 Interaction 5 Center points: 3 If Frac Fac Res V + 32 Interaction 5 Replicates: 0 If O-Optimal 28 - + Interaction 5 Replicates: 0 Onion D-Optimal 41 - + Interaction Total runs: 19 If Rechtschaffner Res V 22 Interaction Interaction Interaction If 18 (3 levels) 18 Linear Block interactions If 2(3 levels) 27 Linear Block interactions	64 Interaction 5 Center points: 3 32 Interaction 5 Replicates: 0 28++ Interaction Total runs: 19 22 Interaction Blocks: 1
	32 Interaction 5 28++ Interaction 41++ Interaction 22 Interaction 19 Blocks: 11
D-Optimal 28-+ Interaction Replicates 0 © Doino D-Optimal 41-+ Interaction Total runs: 19 E Rechtschaffner Res V 22 Interaction Blocks: 1 L 118 (3 levels) 18 Linear Block interactions 1 L 27 (3 levels) 27 Linear Block interactions L 36 (3 levels) 36 Linear Block interactions	28-+ Interaction 41-+ Interaction 22 Interaction 19 Blocks: 19
WOnion D-Optimal 41-+ Interaction Total runs: 19 R_Rechtschaffner Res V 22 Interaction Blocks: 1 L_118 (3 levels) 18 Linear Blocks: 1 L_127 (3 levels) 27 Linear Block interactions L_136 (3 levels) 36 Linear Block interactions	41.+ Interaction Fotal runs: 19 22 Interaction Blocks: 1
Interaction Interaction Blocks: 1 L12 (3 levels) 18 Linear Block interactions L12 (3 levels) 27 Linear Block interactions L36 (3 levels) 36 Linear Block interactions	22 Interaction Blocks: 1 ♥
LL to Lunear LL 27 (3 levels) 27 Linear LL 26 (3 levels) 36 Linear	
Li (27 Gievels) 27 Linear Good and Coord	27 Linear Block interactions
So Ellea	27 Linear
🕅 Frac Fac Res III Second 8 Linear 3 Power analysis:	Second 8 Linear 3 Power analysis:
Frac Fac Res IV First 16 Linear 4	First 16 Linear 4
B Plackett Burman 8+ Linear Target R2: 0,75	8+ Linear Target R2: 0,75
Plackett Burman Super-Saturated 4 Linear Alpha level: 0,05	
	4 Linear Alpha level: 0,05 G
Frac Fac Res III Second 8 Linear 3 Frac Fac Res IV First 16 Linear 4 Plackett Burman 8+ Linear Alpha level: 0,05	Second 8 Linear 3 Power analysis: First 16 Linear 4 8+ Linear Target R2: 0,75
🖞 Plackett Burman Super-Saturated 4 Linear Alpha level: 0,05	
	4 Linear Alpha level: 0,05 0

omks

New screening design family

- Alternative to D-optimal
- Easy balancing w r t multilevel factors

III F	actors															
	Name	Abbr.	Unit	ts	Туре		Settings	Tra	Transform		sion					
1	x1	x1		Quant		itative -	1 to 1	None		0,05						
2	х2	x2		Quant		itative -	1 to 1	No	None 0,0		0,05					
3	х3	x3			Quant	itative -	1 to 1	No	None None None							
4	x4	x4			Quant	itative -	1 to 1	No					Combinatorial designs are generate balanced distribution of all factor se			d f
5	x5	x5			Quant	itative -	1 to 1	No					equal	у.		
6	хб	хб		Quant		itative -	1 to 1	1 None		0,05		_				_
7	х7	x7			Multil	evel 1	; 2; 3; 4	No	ne	0,075						
8	x8	x8		Qualit		ative /	A; B; C									
۱ 🎟	Workshee	et														
	1	2		4		5	5 6		7		8	9	1	10	11	
1	Exp No	Exp Name	Run Order	Incl	/Excl	x1	x1 x2		x3		x 4	х5		хб	x7	
2	1	N1	4	Incl	-		1	1		-1	1		-1			1
3	2	N2	1	Incl	-	-	1	1		-1	-1		1	-:		1
4	3	N3	14	Incl	-		1	-1		1	-1		-1	-:		1
5	4	N4	2	Incl	-	-	·1	-1		-1	1		1	-:		2
6	5	N5	12	Incl	-	-	1	-1		1	1		-1			2
7	6	N6	11	Incl	-	-	1	1		-1	-1		-1			2
8	7	N7	13	Incl	-		1	-1		1	-1		1			3
9	8	N8	3	Incl	-		1	-1		-1	1		-1	-:		3
10	9	N9	5	Incl	-	-	·1	1		1	1		1			3
11	10	N10	9	Incl	-	-	·1	1		1	-1		-1	-		4
12	11	N11	8	Incl	-		1	-1		-1	-1		1			4
13	12	N12	7	Incl	-		1	1		1	1		1	-		4
14	13	N13	10	Incl	-	-	.1	1	· ·	-1	-1		-1			2
15	14	N14	15	Incl	-	-	.1	1		1	1		1			3
16	15	N15	6	Incl	-	-	1	-1	· ·	-1	1		1			2

12 **x8** • Ŧ Ŧ • Ŧ Ŧ Ŧ • Ŧ Ŧ Ŧ Ŧ Ŧ • \mathbf{v}

Prediction plot updates

- Measured values are seen
- Possibility to change uncertainty interval type
- Transformed factors are back-transformed

